Journal of Sound and Vibration (2002) 250(4), 762-771
doi:10.1006/jsvi.2001.3780, available online at http://www.idealibrary.com on ||]E§|,®

®

DESIGN OF A NOVEL CRYPTOSYSTEM BASED ON CHAOTIC
OSCILLATORS AND FEEDBACK INVERSION

S. M. SHAHRUZ

Berkeley Engineering Research Institute, P.O. Box 9984, Berkeley 94709, U.S.A.
E-mail: shahruz@robotics.eecs.berkeley.edu

AND

A. K. PraDEEP AND R. GURUMOORTHY
Board Vantage, 2030 Addison Street, Suite 640, Berkeley 94704, U.S.A.

(Received 20 June 2001)

1. INTRODUCTION

In this note, a novel symmetric (also known as private-key or secret-key) cryptosystem is
designed based on chaotic oscillators such as Duffing’s or a generalized Van der Pol’s
oscillator.

Cryptography is one of the oldest human practices for communicating secretly with
intended parties; see, e.g., references [1-3] for history and non-technical description of
cryptography. In recent decades, cryptography has become exceedingly prevalent in
information technology since: (1) there has been an explosive increase in the transmission of
information by different wired and wireless means; (2) such transmissions require security
and privacy. For instance, currently, computers have become major components of
information technology for communications, electronic mail, on-line banking and
shopping, transmission of financial and medical reports, to name a few. Also, wireless
communication systems have become another important component of information
technology and provide connectivity at local and global scales.

Information technology has thus created a great demand for security and privacy of
information transmission and data storage. Security and privacy are provided by
cryptosystems, which for instance, keep the transmitted data secret and tamper-proof,
protect information from unintended parties aiming to eavesdrop, prevent fraud, and
ensure the privacy of citizens. Due to their crucial role, cryptosystems have become major
elements of information technology.

Cryptosystems are mostly designed based on mathematical theories. Some
cryptosystems, however, are designed based on the theory of dynamical systems. In this
note, the latter approach is taken to design a novel cryptosystem based on chaotic
oscillating systems and the inversion of such systems by a feedback loop. The organization
of the note is as follows. In section 2, the basic structure of cryptosystems is described
briefly. In section 3, a cryptosystem is proposed. In section 4, two examples are given to
illustrate the superb performance of the proposed cryptosystem.
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2. A BRIEF DESCRIPTION OF CRYPTOSYSTEMS

The basic structure of symmetric cryptosystems is shown in Figure 1. The components
and operation of this system are as follows (see, e.g., references [4-8]).

The message to be transmitted is called the plaintext message or simply plaintext and is
denoted by p. In order to represent a plaintext symbols are needed. A finite non-empty set of
symbols is called an alphabet of definition or simply an alphabet. Examples of alphabet are:
(1) the set {0, 1}, known as the binary alphabet; (2) the set {0, 1, 2, ..., 9}; (3) the set of
English alphabet; (4) the set of ASCII symbols which are used for encoding (see, e.g.,
references [4-9]). A plaintext is a string (sequence) of symbols from an alphabet. The set of
all plaintexts is called the plaintext space and is denoted by P (or called the message space
and is denoted by M).

A plaintext p is encrypted to a ciphertext by an encryption function or encryption
transformation E subject to a set of keys k from the key space K. Thus, the ciphertext,
denoted by ¢, can formally be written as

¢ = Ei(p) (1)

The ciphertext is a string of symbols from an alphabet possibly different from that used for
the plaintext. The set of all ciphertexts is called the ciphertext space and is denoted by C.

The ciphertext is transmitted to the receiver, which is the intended recipient of messages.
The receiver decrypts the ciphertext by using a decryption function or decryption
transformation D subject to the same set of keys k € K. The decryption of the plaintext p can
be formally presented by

Dy.(c) = Dy (Ex(p)) = p. @

That is, D, = E; .

In the cryptosystem just described, the same keys are used for both encryption and
decryption. This type of cryptosystem is called the symmetric or private- or secret-key
cryptosystem. In designing cryptosystems, in general, there are two important rules: (1) the
encryption function should transform the plaintext p to a ciphertext ¢ which would be
infeasible (ideally, impossible) to decrypt without the right keys; (2) the inverse of the
encryption function, namely the decryption function, should exist and recover the plaintext
accurately.

Most cryptosystems are designed based on pure mathematical theories such as number
theory, modular arithmetics, algebra, and elliptic curves; see, e.g., references [4-107]. In this
note, a symmetric cryptosystem is designed based on chaotic oscillators, such as Duffing’s
or a generalized Van der Pol’s oscillator. It should be remarked that cryptosystems based
on chaotic systems have been designed by some researchers (see, e.g., references [11-16]).
Such designs are mostly based on the synchronization of two chaotic systems. The
cryptosystem presented in this note is entirely new. In particular, the decryption of the
ciphertext is based on a feedback loop which inverts linear or non-lincar systems. The
proposed inversion is easily implementable and recovers plaintexts very fast and accurately.

Figure 1. Basic structure of symmetric cryptosystems: p and c are, respectively, the plaintext and ciphertext;
E, and D, are, respectively, the encryption and decryption functions subject to the set of keys k.
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3. ANOVEL CRYPTOSYSTEM

The cryptosystem presented in this note is depicted in Figure 2. This system consists of
the following components.

3.1. ENCRYPTION SYSTEM

A major part of the encryption system is a non-linear time-varying system
N:L,,R;)-»L,.(R;). (L,.(R;) denotes the extended L_-space on IR.; sece, e.g.,
references [ 17, 18] for the definition of such spaces; hereafter, (IR ) is deleted in the notation
of spaces). The system N can be any general non-linear system represented by non-linear
differential or integral equations. Other parts of the cryptosystem are the signal generators
S, and S, that generate the time functions t — wy (t) and t — w, (t), respectively. The signal
generator Sy can be, for instance, a non-linear system that generates chaotic outputs, or an
oscillator that generates periodic functions. The signal generator S, is a non-linear system
that generates chaotic outputs, or a random signal generator.

The (private) keys of the cryptosystem in Figure 2 are the system N, its parameters, and
the signal generators S; and S,.

The message to be transmitted is first converted to a plaintext. The plaintext is chosen to
be a string (sequence) or symbols from the binary alphabet and is converted to a train of
pulses of suitable width and of amplitude zero or one. This train of pulses, which is now
a function of time, is denoted by t — p(t). The function p(+) is added to w;(-) to form

u(t) = p(t) + wi (1), )

for all t = 0. The function u(-) is then applied to the system N. The output of N is added to
w, () to form the ciphertext given by

c(t) = (Nu)(t) + wa (1), 4

for all t > 0. Thus, the encryption function of the proposed cryptosystem consists of the
dynamics (evolution) of N and the addition of the output of this system to the chaotic or
random output of the signal generator S,. By appropriate choice of the system N and the
signal generator Sy, the output of N can be chaotic, which would be difficult to decrypt if it

Encryption system Decryption system

Figure 2. Details of the proposed cryptosystem: N is a non-linear time-varying system; S; and S, are signal
generators; g is a (large) constant gain; L(s) is a low-pass filter; Q is a quantizer.
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is intercepted by an unintended party. Moreover, the addition of the chaotic or random
output of the signal generator S, to the output of N enhances the security of the cryptosystem.
The injection of the plaintext p(-) into the chaotic system N can be viewed as the chaotic
modulation of the plaintext, whereas the addition of the output of N to that of the signal
generator S, is the chaotic or random masking of the plaintext already encrypted by N.

The ciphertext is transmitted to the intended party to use the decryption system to
recover the plaintext.

3.2. DECRYPTION SYSTEM

Although it is easy to choose an encryption system, it may be difficult to design
a decryption system that would invert the encryption function. The inversion should be
possible, implementable, and accurate. The crucial part of the inversion of the encryption
function in this note is based on a general result from the theory of feedback systems
described as follows. Consider the system in Figure 3, denoted by S(g, N). In this system,
g in the feedforward loop is a constant gain and N in the feedback loop is a non-linear
system. The following result holds for S(g, N).

Assertion 3.1. Consider the system S(g, N). Let the map g { +gN) *: L., — L., be
bounded for all g € (g4, g,), where I: L ,, — L. is the identity map, g, > 0, and g,>1 are
constant real numbers. For sufficiently large g, the output of S(g, N) is given as

y(©) = (N~ ), )
for all ¢t > 0. That is, S(g, N) inverts the non-linear system N.

Proof. The output of the system S (g, N) is given by

YO =g "+ N, (6)

forallt > 0. For large g, the output y(-) in equation (6) can be approximated by the function
in equation (5). [

Remark. When it is possible to invert a non-linear system N by the system S(g, N), the gain
g should not be chosen very large. The reason is that the output of S (g, N) is usually noisy
and very large g will make it noisier.

Figure 3. The feedback system S(g, N). For sufficiently large gain g, the input-output map of this system is
approximately equal to N~ 1.
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The result of Assertion 3.1 readily explains the decryption system in Figure 2. The
decryption system consists of the signal generator S; and S, and a feedback system similar
to the system S (g, N), where N is the non-linear system used in the encryption system. The
difference between the ciphertext ¢ (-) and the output of the signal generator S, is the input
to S (g, N). The output of S(g, N) is #i(-), which is a good, but noisy approximation of
u(-) = p(-) + wy(*). Subtracting w,(-) from d(-) yields p(-), which is a good, but noisy
approximation of p(-). By using the low-pass filter L(s) and the quantizer Q, the plaintext
p(+) is recovered by the receiver. Note that the keys, namely, the system N and its
parameters and the signal generators S; and S,, are the same in both encryption and
decryption systems. It is remarked that the filter L (s) should be designed carefully in order
to be able to recover the plaintext accurately. For instance, when the plaintext is fed to the
encryption system at high rates, i.e., when the pulses in p(-) have small widths, the filter L (s)
should have fast dynamics.

Thus far, the cryptosystem proposed in this note has been described. In the next section,
examples are presented to illustrate the superb performance of this cryptosystem.

4. EXAMPLES

In this section, two examples are given to illustrate the design of cryptosystem based on
chaotic oscillators in detail.

4.1. EXAMPLE: DUFFING’S OSCILLATOR

Let the non-linear system N in Figure 2 be a Duffing’s oscillator (see, e.g., references
[19-21]) represented by

N: %(t) + 6x(t) — ox(t) + Bx3(t) = u(t), x(0)=0, x(0)=0, 7

forall t > 0, where u(t) € R and x(¢) € R are, respectively, the input to and the output of the
oscillator, and the parameters 9, o, and /5 are constant real numbers. The system N and its
parameters are some of the keys of the cryptosystem. Other keys of this system are the signal
generators S, and S,. For this example, the signal generator S; generates the periodic
function wy (t) = A4 cos wt of amplitude 4 and frequency w for all t > 0. The signal generator
S, is turned off (w, = 0).

The input to the system N is

u(t) = p(t) + Acos wt, (8)

for all t = 0, where p(t) is the train of pulses of amplitude zero or one shown in Figure 4(a),
which incorporates the plaintext, and cos wt is generated by the signal generator S;. If the
input to N were only ¢ +— Acoswt and the parameters J, o, f, A, and » were chosen
appropriately, then x(:), the output of N, would have been chaotic. One such set of
parameters is (see, e.g., references [19-21])

o = 10, p=100, 6=1, A=15  w=2376. )

Using the parameter values in equation (9) and the input in equation (8), the ciphertext
¢(t) = x(t) for all t > 0 is obtained. The ciphertext is chaotic as shown in Figure 4(b). This
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Figure 4. Time histories of: (a) plaintext ¢ +— p (t); (b) ciphertext t — c¢(t); (c) plaintext t — p(t) recovered by the
decryption system. Note the chaotic behaviour of the ciphertext.
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ciphertext is transmitted to the receiver to use the decryption system to recover the
plaintext. The decryption system has the same keys as those of the encryption system.
Additional components of the decryption system are

20
= 10000 L(s) = ) 10
¢ L= (10

and the quantizer Q. The decryption system operates upon the ciphertext and recovers the
plaintext shown in Figure 4(c). It is evident that the plaintext is fully and accurately
recovered.

4.2. EXAMPLE: A GENERALIZED VAN DER POL’S OSCILLATOR

Let the non-linear system N in Figure 2 be a generalized Van der Pol’s oscillator (see, e.g.,
references [22, 23]) represented by

N: %) + 0 (x2 () — D)%) + fx3(1) = u(®), x(0)=0, *(0)=0, (11)

for all t > 0, where u(t) € R and x(¢) € R are, respectively, the input to and the output of the
oscillator, and the system parameters are

6=02, f=1. (12)

The input to the system N is the same as that in equation (8), where the time function
t > p(t) is the train of pulses shown in Figure 5(a), and t +— A coswt is generated by the
signal generator S, with

A=17, w=4 (13)

For parameter values in equations (12) and (13), the output of the system N is chaotic in the
absence of the plaintext ¢ — p(t) in equation (8); see, e.g., references [22, 23]. For this
example, the signal generator S, generates a random output to be added to that of the
system N to form the ciphertext ¢t — c¢(¢) shown in Figure 5(b). The ciphertext is transmitted
to the receiver to use the decryption system to recover the plaintext. The decryption system
has the same keys as those of the encryption system. Additional components of the
decryption system are

150

=000 LY =G0 1 150°

(14)

and the quantizer Q. The decryption system recovers the plaintext fully and accurately as it
is shown in Figure 5(c).

Remark. As shown in sections 4.1 and 4.2, by appropriate choice of the non-linear system
N and the signal generators S; and S,, the encryption system can generate chaotic or
random ciphertexts. There is a variety of non-linear and random systems and signal
generators that can be chosen for N, S;, and S, to generate chaotic ciphertexts; see, e.g.,
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Figure 5. Time histories of: (a) plaintext t — p (¢); (b) ciphertext ¢ — ¢(t); (c) plaintext ¢ — p(¢) recovered by the
decryption system. Note the chaotic and random behaviour of the ciphertext.
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references [23-29]. In choosing N care should be taken since the success of a designed
cryptosystem relies on the invertibility of N by the feedback system S(g, N).

5. CONCLUSIONS

In this note, a novel symmetric cryptosystem is proposed. The encryption system of the
proposed system consists of a non-linear chaotic oscillator and two signal generators. The
non-linear oscillator, its parameters, and the signal generators are the private keys of the
cryptosystem. The plaintext is a train of pulses of suitable width and of amplitude zero or
one which is operated upon by the encryption system. The encryption function consists of
the dynamics (evolution) of the non-linear oscillator and the addition of a chaotic or
a random signal to the output of the oscillator. The decryption system uses the same keys as
those of the encryption system. A feedback loop is used in the decryption system to invert
the non-linear dynamics of the chaotic oscillator. Moreover, the decryption system has
a low-pass filter and a quantizer to recover the plaintext fully and accurately. By
appropriate choice of the non-linear oscillator, the signal generators, and the low-pass filter,
it is possible to have a cryptosystem capable of transmitting information securely and
recovering it accurately. Two examples, which use Duffing’s and a generalized Van der Pol’s
oscillators, are given to illustrate the superb performance of the proposed cryptosystem.
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